核心功能与使用示例

读取因子数据的核心模块

concat_nosqls

 concat_nosqls (func)

do_on_dfs_class

 do_on_dfs_class (func)

一个装饰器,使类的方法的参数可以输入为列表或元组,返回值为分别对各个参数执行此函数后依次得到的结果


TokenUnavailableError

 TokenUnavailableError (error_info)

Not enough permissions.


FactorReader

 FactorReader (token:str)

Initialize self. See help(type(self)) for accurate signature.


FactorReader.show_all_factors_information

 FactorReader.show_all_factors_information ()

FactorReader.read_factor

 FactorReader.read_factor (fac_key:str,
                           trade_date:Union[int,str,datetime.datetime]=Non
                           e, start_date:Union[int,str,datetime.datetime]=
                           None,
                           end_date:Union[int,str,datetime.datetime]=None,
                           sql_like:bool=False)

通过表名,读取因子数据

Type Default Details
fac_key str 表的名称或因子的名称
trade_date typing.Union[int, str, datetime.datetime] None 读取单日因子值,形如20230106或’20230106’或’2023-01-13’或pd.Timestamp(‘2023-01-13’),指定此参数时,start_date和end_date两个参数将失效, by default None
start_date typing.Union[int, str, datetime.datetime] None 读取因子值的起始日期,形如20230106或’20230106’或’2023-01-13’或pd.Timestamp(‘2023-01-13’), by default None
end_date typing.Union[int, str, datetime.datetime] None 读取因子值的终止日期,形如20230106或’20230106’或’2023-01-13’或pd.Timestamp(‘2023-01-13’), by default None
sql_like bool False 返回的数据为形如sql中的长表,包括日期、股票代码、因子值三列, by default False
Returns DataFrame 因子值,index为每天的日期,columns为股票代码,values为因子值

使用示例

第一步:实例化一个FactorReader对象,输入token

fr=FactorReader(token=token) # 初始化一个FactorReader对象,输入token,连接因子数据库

第二步:查看当前因子数据库中有哪些因子(此步骤可选)

fr.show_all_factors_information() # 展示所有可读取因子的相关信息
数据键名 因子名称 报告题目 微信链接
0 factor1 适度冒险因子 成交量激增时刻蕴含的alpha信息——多因子选股系列研究之一 https://mp.weixin.qq.com/s/2pObrtp3V0dv50MFGg_fhw
1 factor2 完整潮汐因子 个股成交量的潮汐变化及“潮汐”因子构建——多因子选股系列研究之二 https://mp.weixin.qq.com/s/_2xWXM8iyNzYDYolT9vVsw
2 factor3 勇攀高峰因子 个股波动率的变动及”勇攀高峰“因子构建——多因子选股系列研究之三 https://mp.weixin.qq.com/s/-IxH3n-uR0BwOIbOyzqPrw
3 factor4 球队硬币因子 个股动量效应的识别及“球队硬币”因子构建——多因子选股系列研究之四 https://mp.weixin.qq.com/s/JCv8qziZ_ZfTbBE6l8cKOQ
4 factor5 云开雾散因子 波动率的波动率与投资者模糊性厌恶——多因子选股系列研究之五 https://mp.weixin.qq.com/s/vX4I9SpKRF3_HKQOGhtZcQ
5 factor6 飞蛾扑火因子 个股股价跳跃及其对振幅因子的改进——多因子选股系列研究之六 https://mp.weixin.qq.com/s/V8r1Xbz5J0A9D5J_9GD_IA
6 factor8 草木皆兵因子 显著效应、极端收益扭曲决策权重和“草木皆兵”因子——多因子选股系列研究之八 https://mp.weixin.qq.com/s/hdtzQaCF2h6ZjZd-0HAftQ
7 factor9 水中行舟因子 个股成交额的市场跟随性与“水中行舟”因子——多因子选股系列研究之九 https://mp.weixin.qq.com/s/Zv6XX8ddUvBCtG-4LM1MKQ

第三步:读取因子数据

①读取单日单个因子的数据

fr.read_factor('球队硬币',trade_date=20230106) # 读取球队硬币因子在2023年1月13日的因子数据
正在读取球队硬币因子的数据
000001.SZ 000002.SZ 000004.SZ 000005.SZ 000006.SZ 000007.SZ 000008.SZ 000009.SZ 000010.SZ 000011.SZ ... 871970.BJ 871981.BJ 872374.BJ 872808.BJ 872925.BJ 873122.BJ 873169.BJ 873223.BJ 873339.BJ 873527.BJ
name index
球队硬币因子 2023-01-06 -3.45854 -0.674148 0.220243 -0.950252 8.786346 0.500339 -1.828122 0.267091 -0.781898 2.299623 ... 0.104238 -1.345124 -1.070172 -3.192394 -1.628848 0.60037 -2.126244 -0.90467 -0.537109 -1.108383

1 rows × 5015 columns

fr.read_factor('factor4',trade_date='20230106') # 读取方正金工多因子系列第4篇的因子在2023年1月13日的因子数据
正在读取球队硬币因子的数据
000001.SZ 000002.SZ 000004.SZ 000005.SZ 000006.SZ 000007.SZ 000008.SZ 000009.SZ 000010.SZ 000011.SZ ... 871970.BJ 871981.BJ 872374.BJ 872808.BJ 872925.BJ 873122.BJ 873169.BJ 873223.BJ 873339.BJ 873527.BJ
name index
球队硬币因子 2023-01-06 -3.45854 -0.674148 0.220243 -0.950252 8.786346 0.500339 -1.828122 0.267091 -0.781898 2.299623 ... 0.104238 -1.345124 -1.070172 -3.192394 -1.628848 0.60037 -2.126244 -0.90467 -0.537109 -1.108383

1 rows × 5015 columns

②读取多个交易日单个因子的数据

fr.read_factor('球队硬币',start_date='2023-01-01',end_date=pd.Timestamp('20230106')) # 读取球队硬币因子从2023年1月1日至2023年1月13日的因子数据
正在读取球队硬币因子的数据
000001.SZ 000002.SZ 000004.SZ 000005.SZ 000006.SZ 000007.SZ 000008.SZ 000009.SZ 000010.SZ 000011.SZ ... 871970.BJ 871981.BJ 872374.BJ 872808.BJ 872925.BJ 873122.BJ 873169.BJ 873223.BJ 873339.BJ 873527.BJ
name index
球队硬币因子 2023-01-03 -2.358642 -1.345033 1.162492 0.007223 8.697314 1.189680 -1.702174 -1.052431 -0.854015 3.398331 ... -0.103756 -1.137786 -1.021316 -3.253337 -1.775420 2.468078 -1.900470 -1.004885 -0.407954 -0.799920
2023-01-04 -3.250196 -0.612765 1.104373 -0.604997 8.853588 0.434524 -2.027665 -1.078369 -1.319052 2.476316 ... -0.088794 -1.116035 -1.024373 -3.126951 -1.740175 2.741972 -2.164878 -0.959739 -0.397286 -0.845371
2023-01-05 -3.612259 -0.353330 0.683165 -0.712644 8.803313 0.304470 -1.978654 -0.557577 -1.869844 2.610491 ... 0.010475 -1.115315 -1.121056 -3.268384 -1.753120 1.020633 -2.132997 -0.893447 -0.449713 -0.817057
2023-01-06 -3.458540 -0.674148 0.220243 -0.950252 8.786346 0.500339 -1.828122 0.267091 -0.781898 2.299623 ... 0.104238 -1.345124 -1.070172 -3.192394 -1.628848 0.600370 -2.126244 -0.904670 -0.537109 -1.108383

4 rows × 5017 columns

fr.read_factor('factor4',start_date=20230101,end_date=20230106,sql_like=True) # 以sql的形式,读取方正金工多因子系列第4篇的因子从2023年1月1日至2023年1月13日的因子数据
正在读取球队硬币因子的数据
date code 球队硬币因子
0 2023-01-03 000001.SZ -2.358642
1 2023-01-03 000002.SZ -1.345033
2 2023-01-03 000004.SZ 1.162492
3 2023-01-03 000005.SZ 0.007223
4 2023-01-03 000006.SZ 8.697314
... ... ... ...
20045 2023-01-06 873122.BJ 0.600370
20046 2023-01-06 873169.BJ -2.126244
20047 2023-01-06 873223.BJ -0.904670
20048 2023-01-06 873339.BJ -0.537109
20049 2023-01-06 873527.BJ -1.108383

20050 rows × 3 columns

③读取多个交易日多个因子的因子数据

fr.read_factor(['球队硬币','云开雾散'],start_date='20230101',end_date='20230106') # 分别读取球队硬币因子和云开雾散因子从2023年1月1日至2023年1月13日的因子数据
正在读取球队硬币因子的数据
正在读取云开雾散因子的数据
000001.SZ 000002.SZ 000004.SZ 000005.SZ 000006.SZ 000007.SZ 000008.SZ 000009.SZ 000010.SZ 000011.SZ ... 301398.SZ 600038.SH 600459.SH 600663.SH 600729.SH 603029.SH 688141.SH 688147.SH 688172.SH 688498.SH
name index
球队硬币因子 2023-01-03 -2.358642 -1.345033 1.162492 0.007223 8.697314 1.189680 -1.702174 -1.052431 -0.854015 3.398331 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2023-01-04 -3.250196 -0.612765 1.104373 -0.604997 8.853588 0.434524 -2.027665 -1.078369 -1.319052 2.476316 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2023-01-05 -3.612259 -0.353330 0.683165 -0.712644 8.803313 0.304470 -1.978654 -0.557577 -1.869844 2.610491 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2023-01-06 -3.458540 -0.674148 0.220243 -0.950252 8.786346 0.500339 -1.828122 0.267091 -0.781898 2.299623 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
云开雾散因子 2023-01-03 -0.981326 -0.944349 -0.997003 4.198288 3.824620 -0.305261 -2.440184 1.778184 -1.547923 2.822911 ... 2.320428 -0.672918 -0.150167 1.191432 0.075872 10.216414 NaN NaN 1.769576 NaN
2023-01-04 -0.874760 -0.565374 -1.418436 -2.256764 3.836005 -0.601352 -1.189656 1.456942 -1.902164 2.427931 ... 2.093086 -0.477727 -0.157869 1.731492 -0.314115 10.224871 NaN NaN 1.559961 1.156921
2023-01-05 -0.254081 -0.614854 -1.407234 -2.364404 3.869275 -1.362426 -1.225968 1.424493 -1.910795 2.395279 ... 2.492977 -0.415604 -0.156190 1.573648 0.032488 9.917723 NaN NaN 1.374394 1.120350
2023-01-06 -0.291150 -0.524840 -1.476704 -3.120565 3.906959 -1.295554 -1.253691 -0.280816 0.352601 2.508948 ... 2.564407 -0.250353 0.183853 1.403672 -0.088864 10.332152 -0.121816 0.644811 1.282682 0.950078

8 rows × 5033 columns

fr.read_factor(['球队硬币','云开雾散'],start_date='20230101',end_date='20230206')
正在读取球队硬币因子的数据
您读取的数据过长,正在分段读取,请稍候……
100%|██████████| 37/37 [00:28<00:00,  1.28it/s]
读取完成,正在拼接,请稍等
正在读取云开雾散因子的数据
您读取的数据过长,正在分段读取,请稍候……
100%|██████████| 37/37 [00:29<00:00,  1.27it/s]
读取完成,正在拼接,请稍等
000001.SZ 000002.SZ 000004.SZ 000005.SZ 000006.SZ 000007.SZ 000008.SZ 000009.SZ 000010.SZ 000011.SZ ... 603029.SH 688525.SH 831195.BJ 838262.BJ 872392.BJ 000045.SZ 002387.SZ 000153.SZ 600038.SH 688506.SH
name index
球队硬币因子 2023-01-03 -2.358642 -1.345033 1.162492 0.007223 8.697314 1.189680 -1.702174 -1.052431 -0.854015 3.398331 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2023-01-04 -3.250196 -0.612765 1.104373 -0.604997 8.853588 0.434524 -2.027665 -1.078369 -1.319052 2.476316 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2023-01-05 -3.612259 -0.353330 0.683165 -0.712644 8.803313 0.304470 -1.978654 -0.557577 -1.869844 2.610491 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2023-01-06 -3.458540 -0.674148 0.220243 -0.950252 8.786346 0.500339 -1.828122 0.267091 -0.781898 2.299623 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2023-01-09 -3.354882 -0.170424 0.087265 -1.711030 8.091143 0.268643 -1.913154 -0.324667 -1.089943 1.179651 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2023-01-10 -4.085837 -1.136618 0.041872 -1.484979 8.123063 0.195857 -1.755869 -0.714262 -1.289059 1.667330 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2023-01-11 -4.299566 -1.225560 0.273944 -1.030241 7.683715 0.762255 -1.444859 -1.031784 -1.868811 1.372701 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2023-01-12 -4.378207 -1.189928 0.237218 -0.655933 7.894500 0.988860 -1.450630 -1.049240 -1.932018 0.904318 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2023-01-13 -4.479527 -1.476970 0.172361 -0.525152 7.266575 1.433193 -1.330020 -0.899924 -2.360796 0.807718 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2023-01-16 -4.171016 -1.219680 -1.174946 -0.475743 6.070169 1.243313 -1.233022 -0.939703 -2.208122 1.029549 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2023-01-17 -4.023675 -1.386111 -2.004400 -0.622768 5.288382 1.007523 -1.466045 -0.899911 -1.885433 -0.014407 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2023-01-18 -4.353316 -2.071842 -2.029811 -0.676816 5.694441 1.046042 -1.427424 -1.070267 -2.242011 0.541593 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2023-01-19 -3.834700 -2.081139 -2.126112 -0.692192 5.532381 0.949091 -1.522382 -1.382040 -2.418350 0.680613 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2023-01-20 -3.529300 -2.139061 -1.950409 -0.787610 6.188294 -0.064943 -1.693119 -1.255481 -2.089060 1.099186 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2023-01-30 -3.396520 -2.177579 -2.041623 -1.006709 4.699233 0.209981 -1.844951 -1.615751 -2.189002 0.647098 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2023-01-31 -3.307280 -2.372615 -1.825028 -1.052096 4.660585 -0.146351 -1.843303 -1.585481 -2.769475 -0.353974 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2023-02-01 -2.712186 -2.285143 -2.908093 -1.144443 2.583668 -0.328338 -1.688609 -1.630970 -2.642992 -0.415580 ... 2.624134 9.190541 2.243016 5.085097 2.930902 NaN NaN NaN NaN NaN
2023-02-02 -2.475493 -2.352708 -3.016441 -1.441300 1.523398 -0.080891 -1.691300 -1.736535 -2.545913 -0.217612 ... 3.471669 8.035542 2.034675 5.038055 2.787796 4.466066 0.000020 NaN NaN NaN
2023-02-03 -2.276289 -2.365098 -2.835789 -1.496792 3.269992 -0.033889 -1.683524 -1.863987 -2.081520 -0.638868 ... 5.042774 7.729171 1.799429 4.820005 2.745846 4.197322 0.103416 0.130123 NaN NaN
2023-02-06 -2.457774 -2.504629 -2.637363 -1.612015 3.456960 -0.064467 -1.685374 -1.756911 -2.093174 -0.557864 ... 4.689956 7.270080 2.828328 3.404015 1.976494 4.459459 -0.093789 -0.010975 NaN NaN
云开雾散因子 2023-01-03 -0.981326 -0.944349 -0.997003 4.198288 3.824620 -0.305261 -2.440184 1.778184 -1.547923 2.822911 ... 10.216414 NaN NaN NaN NaN NaN -0.119242 2.722243 -0.672918 NaN
2023-01-04 -0.874760 -0.565374 -1.418436 -2.256764 3.836005 -0.601352 -1.189656 1.456942 -1.902164 2.427931 ... 10.224871 NaN NaN NaN NaN NaN -0.176335 NaN -0.477727 NaN
2023-01-05 -0.254081 -0.614854 -1.407234 -2.364404 3.869275 -1.362426 -1.225968 1.424493 -1.910795 2.395279 ... 9.917723 NaN NaN NaN NaN NaN 1.390256 NaN -0.415604 NaN
2023-01-06 -0.291150 -0.524840 -1.476704 -3.120565 3.906959 -1.295554 -1.253691 -0.280816 0.352601 2.508948 ... 10.332152 NaN NaN NaN NaN NaN 1.369488 NaN -0.250353 NaN
2023-01-09 -0.311834 -0.652490 -1.435259 -3.156991 3.906213 -1.317670 -1.064004 -0.284044 0.241210 2.511567 ... 10.451378 NaN NaN NaN NaN NaN 1.790611 NaN -0.129676 NaN
2023-01-10 -0.252993 -0.673770 -1.452988 -3.094026 4.145813 -1.365568 -0.990502 0.061734 -0.068599 2.412575 ... 9.994998 NaN NaN NaN NaN NaN 1.753357 NaN 1.476060 NaN
2023-01-11 -0.108614 -0.409360 -1.538049 -3.050843 4.022810 -1.322641 -0.947558 -0.022587 -0.226062 1.874980 ... 9.835279 NaN NaN NaN NaN NaN 2.050787 NaN 1.580048 NaN
2023-01-12 -0.019939 -0.348093 -1.517629 -3.235680 4.079903 -1.376875 -0.880969 0.259599 -0.196476 1.914316 ... 9.753503 NaN NaN NaN NaN NaN 3.056719 NaN 1.593361 NaN
2023-01-13 0.004401 -0.231196 -1.393393 -3.245165 3.799570 -1.262185 -0.851256 -0.057122 -0.185930 2.013694 ... 10.744896 2.872292 NaN NaN NaN NaN 3.320740 NaN 1.514023 NaN
2023-01-16 -0.095033 -0.481757 -1.352985 -3.607232 3.402758 -1.354385 -0.873112 -0.010235 -0.363502 1.528507 ... 10.615026 2.599090 NaN NaN NaN NaN 3.364177 NaN 0.875702 NaN
2023-01-17 0.024778 -0.312762 -1.256656 -3.683347 3.316168 -0.715599 -0.884222 -0.092405 -0.360934 0.865153 ... 9.666980 3.535676 NaN NaN NaN 1.102298 2.930146 NaN 0.968285 NaN
2023-01-18 -0.026242 -0.403705 -0.844195 -4.013815 3.142178 -0.796957 -0.984815 -0.125247 -0.493555 0.820175 ... 9.768873 14.707472 NaN NaN NaN 0.964833 2.595237 -0.017674 0.924300 NaN
2023-01-19 -0.089630 -0.456148 -0.838379 -4.044224 3.142638 -0.736692 -1.018868 -0.156723 -0.563879 1.005141 ... 9.555741 13.743744 NaN NaN NaN 2.542283 2.252805 -0.177023 0.931085 1.175814
2023-01-20 -0.122600 -0.368921 -0.858872 -4.358661 2.865788 -0.362223 -1.177539 -0.086074 -0.468621 1.080388 ... 4.278222 13.298083 NaN NaN NaN 2.291371 1.989806 -0.395701 1.111020 0.954491
2023-01-30 -0.161589 -0.119212 -0.485579 -4.350704 2.349619 -0.752434 -1.263825 0.264184 -0.125579 0.428520 ... 3.914207 12.830232 NaN NaN NaN 2.034340 1.744189 -0.580326 1.174657 0.980863
2023-01-31 -0.249149 -0.111299 0.580837 -4.311461 2.125479 -0.522978 -1.269708 0.149615 -0.414614 0.261126 ... 3.783427 12.366186 NaN NaN NaN 4.748344 1.502847 -0.460303 0.904349 1.675340
2023-02-01 -0.244308 -0.094077 0.989772 -4.181594 1.518413 0.031954 -1.081082 -0.362750 -0.399329 -0.516374 ... 3.643406 11.642035 NaN NaN NaN 4.397930 1.416109 -0.632037 0.675453 1.989817
2023-02-02 -0.149381 -0.069716 0.750863 -4.240031 1.322263 0.358174 -1.178853 -0.400854 -0.460727 -1.164629 ... 4.035154 11.790204 NaN NaN NaN 4.403098 1.457429 -0.582638 0.422889 2.240189
2023-02-03 -0.324321 -0.017821 0.742932 -4.099188 1.124398 0.400221 -1.095826 -0.374888 -0.115109 -1.262224 ... 4.065579 11.408996 NaN NaN NaN 4.189308 1.342988 -0.645231 0.394539 2.069732
2023-02-06 -0.267734 0.007991 0.769199 -4.068778 0.035837 0.471708 -1.089275 -0.295580 -0.071036 -1.311063 ... 4.203574 10.955787 NaN NaN NaN 4.184727 1.200537 -0.776995 0.282424 1.927306

40 rows × 5068 columns

fr.read_factor(['球队硬币','云开雾散'],trade_date=20230106)
正在读取球队硬币因子的数据
正在读取云开雾散因子的数据
000001.SZ 000002.SZ 000004.SZ 000005.SZ 000006.SZ 000007.SZ 000008.SZ 000009.SZ 000010.SZ 000011.SZ ... 301398.SZ 600038.SH 600459.SH 600663.SH 600729.SH 603029.SH 688141.SH 688147.SH 688172.SH 688498.SH
name index
球队硬币因子 2023-01-06 -3.45854 -0.674148 0.220243 -0.950252 8.786346 0.500339 -1.828122 0.267091 -0.781898 2.299623 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
云开雾散因子 2023-01-06 -0.29115 -0.524840 -1.476704 -3.120565 3.906959 -1.295554 -1.253691 -0.280816 0.352601 2.508948 ... 2.564407 -0.250353 0.183853 1.403672 -0.088864 10.332152 -0.121816 0.644811 1.282682 0.950078

2 rows × 5032 columns

fr.read_factor(['球队硬币','云开雾散','飞蛾扑火'],start_date=pd.Timestamp('20230101'),end_date=20230106,sql_like=True) # 以sql的形式,分别读取球队硬币因子、云开雾散因子、飞蛾扑火因子从2023年1月1日至2023年1月13日的因子数据
正在读取球队硬币因子的数据
正在读取云开雾散因子的数据
正在读取飞蛾扑火因子的数据
date code 球队硬币因子 云开雾散因子 飞蛾扑火因子
0 2023-01-03 000001.SZ -2.358642 -0.981326 -1.211546
1 2023-01-03 000002.SZ -1.345033 -0.944349 -0.747704
2 2023-01-03 000004.SZ 1.162492 -0.997003 -1.218871
3 2023-01-03 000005.SZ 0.007223 4.198288 -0.089553
4 2023-01-03 000006.SZ 8.697314 3.824620 6.631622
... ... ... ... ... ...
20114 2023-01-06 688498.SH NaN 0.950078 5.589459
20115 2023-01-04 000153.SZ NaN NaN 3.513004
20116 2023-01-05 000153.SZ NaN NaN 4.299205
20117 2023-01-06 000153.SZ NaN NaN 2.936270
20118 2023-01-06 601136.SH NaN NaN 4.224534

20119 rows × 5 columns

fr.read_factor(['球队硬币','云开雾散','飞蛾扑火'],trade_date=20230106,sql_like=True) # 以sql的形式,分别读取球队硬币因子、云开雾散因子、飞蛾扑火因子2023年1月13日的因子数据
正在读取球队硬币因子的数据
正在读取云开雾散因子的数据
正在读取飞蛾扑火因子的数据
date code 球队硬币因子 云开雾散因子 飞蛾扑火因子
0 2023-01-06 000001.SZ -3.458540 -0.291150 -0.952147
1 2023-01-06 000002.SZ -0.674148 -0.524840 -0.743429
2 2023-01-06 000004.SZ 0.220243 -1.476704 -1.224969
3 2023-01-06 000005.SZ -0.950252 -3.120565 -0.757643
4 2023-01-06 000006.SZ 8.786346 3.906959 6.767050
... ... ... ... ... ...
5029 2023-01-06 688147.SH NaN 0.644811 NaN
5030 2023-01-06 688172.SH NaN 1.282682 0.124283
5031 2023-01-06 688498.SH NaN 0.950078 5.589459
5032 2023-01-06 000153.SZ NaN NaN 2.936270
5033 2023-01-06 601136.SH NaN NaN 4.224534

5034 rows × 5 columns